Gene expression vs. sequence divergence: comparative transcriptome sequencing among natural Rhinolophus ferrumequinum populations with different acoustic phenotypes | Frontiers in Zoology

  • 1.

    Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol. 2007;21(3):394–407.

  • 2.

    Coyne JA, Orr HA. Speciation. Sinauer Associates, Inc: Sunderland; 2004.

  • 3.

    Sobel JM, Chen GF, Watt LR, Schemske DW. The biology of speciation. Evolution. 2010;64(2):295–315.

  • 4.

    Jiang T, Wu H, Feng J. Patterns and causes of geographic variation in bat echolocation pulses. Integr Zool. 2015;10(3):241–56.

  • 5.

    Shaw KL, Mullen SP. Genes versus phenotypes in the study of speciation. Genetica. 2011;139(5):649–61.

  • 6.

    Boughman JW. How sensory drive can promote speciation. Trends Ecol Evol. 2002;17(12):571–7.

  • 7.

    Endler JA. Signals, signal conditions, and the direction of evolution. Am Nat. 1992;139:S125–S53.

  • 8.

    Ey E, Fischer J. The “acoustic adaptation hypothesis”—a review of the evidence from birds, Anurans and Mammals. Bioacoustics. 2009;19(1–2):21–48.

  • 9.

    Pröhl H, Hagemann S, Karsch J, Höbel G. Geographic variation in male sexual signals in strawberry poison frogs (Dendrobates pumilio). Ethology. 2007;113(9):825–37.

  • 10.

    Zuk M, Rotenberry JT, Simmons LW. Geographical variation in calling song of the field cricket Teleogryllus oceanicus: the importance of spatial scale. J Evol Biol. 2008;14(5):731–41.

  • 11.

    Mutumi GL, Jacobs DS, Winker H. Sensory drive mediated by climatic gradients partially explains divergence in acoustic signals in two horseshoe bat species, Rhinolophus swinnyi and Rhinolophus simulator. PLoS One. 2016;11(1):e0148053.

  • 12.

    Jacobs DS, Catto S, Mutumi GL, Finger N, Webala PW. Testing the sensory drive hypothesis: geographic variation in echolocation frequencies of Geoffroy’s horseshoe bat (Rhinolophidae: Rhinolophus clivosus). PLoS One. 2017;12(11):e0187769.

  • 13.

    Waters DA, Rydell J, Jones G. Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri. Behav Ecol Sociobiol. 1995;37(5):321–8.

  • 14.

    Barclay RMR, Fullard JH, Jacobs DS. Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Can J Zool. 1999;77(4):530–4.

  • 15.

    Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11(12):855–66.

  • 16.

    Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zhang S. The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci U S A. 2008;105(37):13959–64.

  • 17.

    Dong D, Lei M, Liu Y, Zhang S. Comparative inner ear transcriptome analysis between the Rickett’s big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx). BMC Genomics. 2013;14(1):916.

  • 18.

    Liu Y, Han N, Franchini LF, Xu H, Pisciottano F, Elgoyhen AB, et al. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Mol Biol Evol. 2012;29(5):1441–50.

  • 19.

    Shen YY, Liang L, Li GS, Murphy RW, Zhang YP. Parallel evolution of auditory genes for echolocation in bats and toothed whales. PLoS Genet. 2012;8(6):e1002788.

  • 20.

    Huihua Z, Shuyi Z, Mingxue Z, Jiang Z. Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. J Zool. 2003;259(2):189–95.

  • 21.

    Wang J, Gao W, Wang L, Metzner W, Ma J, Feng J. Seasonal variation in prey abundance influences habitat use by greater horseshoe bats (Rhinolophus ferrumequinum) in a temperate deciduous forest. Can J Zool. 2010;88(3):315–23.

  • 22.

    Sun K, Luo L, Kimball RT, Wei X, Jin L, Jiang T, et al. Geographic variation in the acoustic traits of greater horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes. PLoS One. 2013;8(8):e70368.

  • 23.

    Flanders J, Jones G, Benda P, Dietz C, Zhang S, Li G, et al. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol. 2009;18(2):306–18.

  • 24.

    Flanders J, Wei L, Rossiter SJ, Zhang S. Identifying the effects of the Pleistocene on the greater horseshoe bat, Rhinolophus ferrumequinum, in East Asia using ecological niche modelling and phylogenetic analyses. J Biogeogr. 2011;38(3):439–52.

  • 25.

    Rübsamen R. Ontogenesis of the echolocation system in the rufous horseshoe bat, Rhinolophus rouxi (audition and vocalization in early postnatal development). J Comp Physiol A. 1987;161(6):899–913.

  • 26.

    Basch ML, Brown RM 2nd, Jen HI, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat. 2016;228(2):233–54.

  • 27.

    Schnitzler HU. Control of doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. J Comp Physiol. 1973;82(1):79–92.

  • 28.

    Schuller G, Pollak G. Disproportionate frequency representation in the inferior colliculus of doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. Journal of comparative physiology ? A. 1979;132(1):47–54.

  • 29.

    Wang H, Zhao H, Huang X, Sun K, Feng JJ Sr. Comparative cochlear transcriptomics of echolocating bats provides new insights into different nervous activities of CF bat species. Sci Rep. 2018;8(1):15934.

  • 30.

    Crow AL, Ohmen J, Wang J, Lavinsky J, Hartiala J, Li Q, et al. The genetic architecture of hearing impairment in mice: evidence for frequency-specific genetic determinants. G3. 2015;5(11):2329–39.

  • 31.

    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

  • 32.

    Todd EV, Black MA, Gemmell NJ. The power and promise of RNA-seq in ecology and evolution. Mol Ecol. 2016;25(6):1224–41.

  • 33.

    Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet. 2013;93(4):641–51.

  • 34.

    Lopez-Maestre H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, et al. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res. 2016;44(19):e148.

  • 35.

    Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot MF, et al. KISSPLICE: de-novo calling alternative splicing events from RNA-seq data. BMC Bioinf. 2012;13 Suppl 6(6):S5.

  • 36.

    Willing EM, Dreyer C, van Oosterhout C. Estimates of genetic differentiation measured by F(ST) do not necessarily require large sample sizes when using many SNP markers. PLoS One. 2012;7(8):e42649.

  • 37.

    Russo D, Mucedda M, Bello M, Biscardi S, Pidinchedda E, Jones G. Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? J Biogeogr. 2007;34(12):2129–38.

  • 38.

    Jiang T, Metzner W, You Y, Liu S, Lu G, Li S, et al. Variation in the resting frequency of Rhinolophus pusillus in mainland China: effect of climate and implications for conservation. J Acoust Soc Am. 2010;128(4):2204–11.

  • 39.

    Specht R. Avisoft-saslab pro: sound analysis and synthesis laboratory. 2002. Accessed 6 May 2017.

  • 40.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

  • 41.

    Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2019;47(D1):D23–D8.

  • 42.

    Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.

  • 43.

    Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590–D5.

  • 44.

    McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32(Web Server issue):W20–5.

  • 45.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

  • 46.

    Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot. 2012;99(2):248–56.

  • 47.

    Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.

  • 48.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995:289–300.

  • 49.

    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1):559.

  • 50.

    Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.

  • 51.

    Lischer HE, Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012;28(2):298–9.

  • 52.

    Karger DN, Conrad O, Bohner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Data Descriptor: Climatologies at high resolution for the earth’s land surface areas. Sci Dat. 2017;4:170122.

  • 53.

    Snell-Rood EC. The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation? J Acoust Soc Am. 2012;131(2):1650–8.

  • 54.

    Hijmans RJ, van Etten J. raster: Geographic data analysis and modeling. R package version 2014; 2(8).

  • 55.

    Christmas MJ, Biffin E, Breed MF, Lowe AJ. Finding needles in a genomic haystack: targeted capture identifies clear signatures of selection in a nonmodel plant species. Mol Ecol. 2016;25(17):4216–33.

  • 56.

    De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol Ecol. 2014;23(19):4709–21.

  • 57.

    Dillon S, McEvoy R, Baldwin DS, Rees GN, Parsons Y, Southerton S. Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (river red gum). PLoS One. 2014;9(8):e103515.

  • 58.

    Jordan R, Hoffmann AA, Dillon SK, Prober SM. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: implications for adaptive potential to projected climate change. Mol Ecol. 2017;26(21):6002–20.

  • 59.

    Luu K, Bazin E, Blum MG. Pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour. 2017;17(1):67–77.

  • 60.

    Weisstein EW. Bonferroni correction. 2004. Accessed 20 Aug 2018.

  • 61.

    Gunther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195(1):205–20.

  • 62.

    Caye K, Francois O. LFMM 2.0: Latent factor models for confounder adjustment in genome and epigenome-wide association studies. Biorxiv. 2018:255893.

  • 63.

    Pritchard JK, Wen W, Falush D. Documentation for structure software: version 2. 2003. Accessed 20 Aug 2018.

  • 64.

    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.

  • 65.

    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich DJN. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904.

  • 66.

    Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190.

  • 67.

    Frichot E, François O. LEA: an R package for landscape and ecological association studies. Meth Ecol Evol. 2015;6(8):925–9.

  • 68.

    OmicShare tools. 2016. Accessed 15 Dec 2018.

  • 69.

    Veidenberg A, Medlar A, Loytynoja A. Wasabi: an integrated platform for evolutionary sequence analysis and data visualization. Mol Biol Evol. 2016;33(4):1126–30.

  • 70.

    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.

  • 71.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

  • 72.

    Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.

  • 73.

    Fraser HB. Gene expression drives local adaptation in humans. Genome Res. 2013;23(7):1089–96.

  • 74.

    Hutter S, Saminadin-Peter SS, Stephan W, Parsch J. Gene expression variation in African and European populations of Drosophila melanogaster. Genome Biol. 2008;9(1):R12.

  • 75.

    Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1):Article17.

  • 76.

    Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F. For whom the bird sings: context-dependent gene expression. Neuron. 1998;21(4):775–88.

  • 77.

    Maney DL, MacDougall-Shackleton EA, MacDougall-Shackleton SA, Ball GF, Hahn TP. Immediate early gene response to hearing song correlates with receptive behavior and depends on dialect in a female songbird. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003;189(9):667–74.

  • 78.

    Frankl-Vilches C, Kuhl H, Werber M, Klages S, Kerick M, Bakker A, et al. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol. 2015;16(1):19.

  • 79.

    Yang Y, Wang X, Liu Y, Fu Q, Tian C, Wu C, et al. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish. Comp Biochem Physiol Part D Genomics Proteomics. 2018;27:30–9.

  • 80.

    Wan Z, Lin G, Yue G. Genes for sexual body size dimorphism in hybrid tilapia (Oreochromis sp. x Oreochromis mossambicus). Aquac Fish. 2019.

  • 81.

    Manel S, Albert CH, Yoccoz NG. Sampling in landscape genomics. In: Data production and analysis in population genomics. Totowa: Humana Press; 2012. p. 3–12.

  • 82.

    Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour. 2017;17(6):1136–47.

  • 83.

    Bernatchez S, Laporte M, Perrier C, Sirois P, Bernatchez LJME. Investigating genomic and phenotypic parallelism between piscivorous and planktivorous lake trout (Salvelinus namaycush) ecotypes by means of RAD seq and morphometrics analyses. Mol Ecol. 2016;25(19):4773–92.

  • 84.

    Bowman LL, Kondrateva ES, Timofeyev MA, Yampolsky LYJM. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species. Mol Ecol. 2018;27(11):2544–59.

  • 85.

    Harris SE, Munshi-South JJM. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol Ecol. 2017;26(22):6336–50.

  • 86.

    Terashita T, Saito S, Nabeka H, Hato N, Wakisaka H, Shimokawa T, et al. Prosaposin-derived peptide alleviates ischaemia-induced hearing loss. Acta Otolaryngol. 2013;133(5):462–8.

  • 87.

    Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, et al. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci. 2004;24(40):8651–61.

  • 88.

    Watanabe F, Kirkegaard M, Matsumoto S, Gont C, Mannstrom P, Ulfendahl M, et al. Signaling through erbB receptors is a critical functional regulator in the mature cochlea. Eur J Neurosci. 2010;32(5):717–24.

  • 89.

    Smith ME, Groves AK, Coffin AB. Editorial: sensory hair cell death and regeneration. Front Cell Neurosci. 2016;10:208.

  • 90.

    Falah M, Najafi M, Houshmand M, Farhadi M. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment. Clin Interv Aging. 2016;11:1003–8.

  • 91.

    Vermeren M, Lyraki R, Wani S, Airik R, Albagha O, Mort R, et al. Osteoclast stimulation factor 1 (Ostf1) KNOCKOUT increases trabecular bone mass in mice. Mamm Genome. 2017;28(11–12):498–514.

  • 92.

    Core N, Caubit X, Metchat A, Boned A, Djabali M, Fasano L. Tshz1 is required for axial skeleton, soft palate and middle ear development in mice. Dev Biol. 2007;308(2):407–20.

  • 93.

    Kerschner JE, Khampang P, Erbe CB, Kolker A, Cioffi JA. Mucin gene 19 (MUC19) expression and response to inflammatory cytokines in middle ear epithelium. Glycoconj J. 2009;26(9):1275–84.

  • 94.

    Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, et al. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66(4):345–52.

  • 95.

    Rohrbach M, Spencer HL, Porter LF, Burkitt-Wright EM, Burer C, Janecke A, et al. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol Genet Metab. 2013;109(3):289–95.

  • 96.

    Udar N, Atilano SR, Boyer DS, Chwa M, Memarzadeh M, Langberg J, et al. CKMT2 mutation in a patient with fatigue, age-related macular degeneration, deafness and atrial fibrillation. Biomed Genet Genom. 2017;2(2).

  • 97.

    Kurima K, Yang Y, Sorber K, Griffith AJ. Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics. 2003;82(3):300–8.

  • 98.

    Zaki MS, Bhat G, Sultan T, Issa M, Jung HJ, Dikoglu E, et al. PYCR2 mutations cause a lethal syndrome of microcephaly and failure to thrive. Ann Neurol. 2016;80(1):59–70.

  • 99.

    Yariz KO, Duman D, Zazo Seco C, Dallman J, Huang M, Peters TA, et al. Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. Am J Hum Genet. 2012;91(5):872–82.

  • 100.

    Vona B, Neuner C, El Hajj N, Schneider E, Farcas R, Beyer V, et al. Disruption of the ATE1 and SLC12A1 genes by balanced translocation in a boy with non-syndromic hearing loss. Mol Syndromol. 2014;5(1):3–10.

  • 101.

    Li Y, Pohl E, Boulouiz R, Schraders M, Nurnberg G, Charif M, et al. Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet. 2010;86(3):479–84.

  • 102.

    Hilgert N, Smith RJ, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res. 2009;681(2–3):189–96.

  • 103.

    Schrauwen I, Kari E, Mattox J, Llaci L, Smeeton J, Naymik M, et al. De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness. Hum Genet. 2018;137(6–7):459–70.

  • 104.

    Waryah AM, Rehman A, Ahmed ZM, Bashir ZH, Khan SY, Zafar AU, et al. DFNB74, a novel autosomal recessive nonsyndromic hearing impairment locus on chromosome 12q14.2-q15. Clin Genet. 2009;76(3):270–5.

  • Source link

    Notice: compact(): Undefined variable: limits in /customers/6/d/3/ on line 853 Notice: compact(): Undefined variable: groupby in /customers/6/d/3/ on line 853